Logistic Questions and Solutions at a Special Slaughter Company, Beck-Hús LTD.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Questions and techniques

Jeopardy!i questions represent a wide variety of question types. The vast majority are Standard Jeopardy! Questions, where the question contains one or more assertions about some unnamed entity or concept, and the task is to identify the described entity or concept. This style of question is a representative of a wide range of common question-answering tasks, and the bulk of the IBM Watsoni sys...

متن کامل

SDN Solutions Takeuchi Mfg. Co., Ltd

Takeuchi Mfg.'s core products are compact excavators, track loaders, and other compact construction equipment used to build homes and other buildings. Internet of Things (IoT) utilization has recently become a major topic in the manufacturing industry, and Takeuchi Mfg. has set its sights on leveraging IoT as it continues to push reforms, implement a wide variety of IT systems, and build new fa...

متن کامل

The Logistic Maturity Model: Application to a Fashion Company

This paper describes the structure of the logistic maturity model (LMM) in detail and shows the possible improvements that can be achieved by using this model in terms of the identification of the most appropriate actions to be taken in order to increase the performance of the logistics processes in industrial companies. The paper also gives an example of the LMM’s application to a famous Itali...

متن کامل

Targeting: Logistic Regression, Special Cases and Extensions

Logistic regression is a classical linear model for logit-transformed conditional probabilities of a binary target variable. It recovers the true conditional probabilities if the joint distribution of predictors and the target is of log-linear form. Weights-of-evidence is an ordinary logistic regression with parameters equal to the differences of the weights of evidence if all predictor variabl...

متن کامل

Sample questions with solutions

p(pos) = p(User1) ∗ p(pos|User1) + p(User2) ∗ p(pos|User2) + p(User3) ∗ p(pos|User3) = 0.2 ∗ 0.3 + 0.2 ∗ 0.5 + 0.6 ∗ 0.3 = 0.06 + 0.10 + 0.18 = 0.34 p(neut) = p(User1) ∗ p(neut|User1) + p(User2) ∗ p(neut|User2) + p(User3) ∗ p(neut|User3) = 0.2 ∗ 0.4 + 0.2 ∗ 0.5 + 0.6 ∗ 0.3 = 0.08 + 0.10 + 0.18 = 0.36 p(neg) = p(User1) ∗ p(neg|User1) + p(User2) ∗ p(neg|User2) + p(User3) ∗ p(neg|User3) = 0.2 ∗ 0....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analecta Technica Szegedinensia

سال: 2017

ISSN: 2064-7964

DOI: 10.14232/analecta.2017.2.16-21